EconPapers    
Economics at your fingertips  
 

Evaluation of the Air Oxygen Enrichment Effects on Combustion and Emissions of Natural Gas/Diesel Dual-Fuel Engines at Various Loads and Pilot Fuel Quantities

Roussos G. Papagiannakis, Dimitrios C. Rakopoulos and Constantine D. Rakopoulos
Additional contact information
Roussos G. Papagiannakis: Thermodynamic & Propulsion Systems Section, Aeronautical Sciences Department, Hellenic Air Force Academy, Dekelia Air Force Base, 1010 Dekelia, Attiki, Greece
Dimitrios C. Rakopoulos: Internal Combustion Engines Laboratory, Department of Thermal Engineering, School of Mechanical Engineering, National Technical University of Athens, Zografou Campus, 9 Heroon Polytechniou Street, 15780 Athens, Greece
Constantine D. Rakopoulos: Internal Combustion Engines Laboratory, Department of Thermal Engineering, School of Mechanical Engineering, National Technical University of Athens, Zografou Campus, 9 Heroon Polytechniou Street, 15780 Athens, Greece

Energies, 2018, vol. 11, issue 11, 1-25

Abstract: The use of natural gas (NG) as supplement of the normal diesel fuel in compression ignition (CI) environments (Natural Gas/Diesel Dual-Fuel, NG/DDF), seems to present an answer towards reducing soot or particulate matter (PM) and nitrogen oxides (NOx) emissions in existing and future diesel engine vehicles. The benefits for the environment can be even higher, as recently NG quality gas can be produced from biomass (bio-methane or bio-CNG or ‘green gas’). However, this engine type where the main fuel is the gaseous one and the diesel liquid fuel constitutes the ignition source (pilot), experiences higher specific energy consumption (SEC), carbon monoxide (CO), and unburned hydrocarbons (HC) emissions compared to the conventional (normal) diesel one, with these adverse effects becoming more apparent under partial load operation conditions. Apart from using bio-fuels as pilot fuel, it is anticipated that air oxygen enrichment—addition of oxygen in the intake air—can mitigate (at least partly) the associated negative results, by accelerating the burning rate and reducing the ignition delay. Therefore, the present work strives to investigate the effects of various degrees of oxygen enrichment on the combustion, performance, and emissions of such a NG/DDF engine, operated under various loads and pilot (diesel fuel) quantities. The study is carried out by using an in-house, comprehensive, computational model, which is a two-zone (phenomenological) one. The accuracy of the modeling results are tested by using related experimental data from the literature, acquired in an experimental investigation conducted on a naturally aspirated, light-duty, NG/DDF engine. The computational study is extended to include various pilot fuel quantities, attempting to identify the influence of the examined parameters and witness advantages and disadvantages. The study results demonstrate that the air oxygen enrichment reduces the specific energy consumption and CO emissions, by accelerating the burning rate and reducing the ignition delay (as revealed by the cylinder pressure and rate of heat release diagrams), without impairing seriously the soot and NO emissions. The conclusions of the specific investigation are much useful, particularly if wished to identify the optimum combination of the parameters under examination for improving the overall performance of existing CI engines functioning under natural gas/diesel fuel operating mode.

Keywords: intake air oxygen enrichment; natural gas; dual-fuel diesel engine; pilot fuel quantity; two-zone modeling; bio-fuels; combustion; performance; emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3028/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3028/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3028-:d:180514

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3028-:d:180514