Dynamic Programming for Optimal Energy Management of Hybrid Wind–PV–Diesel–Battery
Luu Ngoc An and
Tran Quoc Tuan
Additional contact information
Luu Ngoc An: Department of Power Systems, Faculty of Electrical Engineering, Danang University of Science and Technology—The University of Danang, Danang City 550000, Vietnam
Tran Quoc Tuan: lternative Energies and Atomic Energy Commission (CEA), National Institute for Solar Energy (INES), 50 Avenue du Lac Léman, F-73375 Le Bourget-du-Lac, France
Energies, 2018, vol. 11, issue 11, 1-16
Abstract:
With the dramatic development of renewable energy resources all over the world, Vietnam has started to apply them along with the conventional resources to produce the electrical power in recent years. Visually, the aim of this action is to improve the economic as well as the environmental benefits. Therefore, a vast of hybrid systems that combine Wind turbine, Photovoltaic (PV), Diesel generator and battery have been considered with different configurations. According to this topic, there are lots of research trends in the literature. However, we aim to the optimal energy management of this hybrid system. In particular, in this paper, we propose an optimization method to deal with it. The interesting point of the proposed method is the usage of the information of sources, loads, and electricity market as an embedded forecast step to enhance the effectiveness of the actual operation via minimizing the operation cost by scheduling distributed energy resources (DER) while regarding emission reduction in the hybrid system is considered as the objective function. In this optimization problem, the constraints are determined by two terms, namely: the balance of power between the supply and the load demand, and also the limitations of each DER. Thus, to solve this problem, we make use of the dynamic programming (DP) to transform a system into a multi-stage decision procedure with respect to the state of charge (SOC), resulting in the minimum system cost (CS). In order to highlight the pros of the proposed method, we implement the comparison to a rule-based method in the same context. The simulation results are examined in order to evaluate the effectiveness of the developed methodology, which is a so-called global optimization.
Keywords: dynamic programming; photovoltaic; wind; diesel; energy management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3039/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3039/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3039-:d:180729
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().