EconPapers    
Economics at your fingertips  
 

Numerical Study of Heat Transfer Enhancement of Internal Flow Using Double-Sided Delta-Winglet Tape Insert

Agung Tri Wijayanta, Muhammad Aziz, Keishi Kariya and Akio Miyara
Additional contact information
Agung Tri Wijayanta: Department of Mechanical Engineering, Universitas Sebelas Maret, Kampus UNS Kentingan, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
Muhammad Aziz: Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Keishi Kariya: Department of Mechanical Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga-shi 840-8502, Japan
Akio Miyara: Department of Mechanical Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjomachi, Saga-shi 840-8502, Japan

Energies, 2018, vol. 11, issue 11, 1-15

Abstract: A numerical study was performed to investigate the thermal performance characteristics of an enhanced tube heat exchanger fitted with punched delta-winglet vortex generators. Computational fluid dynamics modeling was applied using the k–ε renormalized group turbulence model. Benchmarking was performed using the results of the experimental study for a similar geometry. Attack angles of 30°, 50°, and 70° were used to investigate the heat transfer and pressure drop characteristics of the enhanced tube. Flow conditions were considered in the turbulent region in the Reynolds number range of 9100 to 17,400. A smooth tube was employed for evaluating the increment in the Nusselt number and the friction factor characteristics of the enhanced tube. The results show that the Nusselt number, friction factor, and thermal performance factor have a similar tendency. The presence of this insert offers a higher thermal performance factor as compared to that obtained with a plain tube. Vortex development in the flow structure aids in generating a vortex flow, which increases convective heat transfer. In addition, as the angle is varied, it is observed that the largest attack angle provides the highest thermal performance factor. The greatest increase in the Nusselt number and friction factor, respectively, was found to be approximately 3.7 and 10 times greater than those of a smooth tube. Through numerical simulations with the present simulation condition, it is revealed that the thermal performance factor approaches the value of 1.1. Moreover, the numerical and experimental values agree well although they tend to be different at high Reynolds number conditions. The numerical and experimental values both show similar trends in the Nusselt number, friction factor, and thermal performance factor.

Keywords: delta-winglet vortex generator; attack angle; thermal performance factor; turbulent flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3170/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3170/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3170-:d:183129

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3170-:d:183129