EconPapers    
Economics at your fingertips  
 

A Feasibility Study on Power Generation from Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs

Islam Elsayed and Yoshiki Nishi
Additional contact information
Islam Elsayed: Department of Systems Design for Ocean-Space, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
Yoshiki Nishi: Department of Systems Design for Ocean-Space, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan

Energies, 2018, vol. 11, issue 11, 1-18

Abstract: A solar thermal wind tower (STWT) is a low-temperature power generation plant that mimics the wind cycle in nature, comprising a flat plate solar air collector and central updraft tower to produce thermal wind that drives turbines to generate electricity. The development of power generation systems toward a sustainable future needs to be made taking into account the balance between environmental impact and economic feasibility. We examine the sustainability of STWT power generation technology using the inclusive impact index light (Triple I-light), which estimates whether it is good to do the project, including both the negative environmental impact and the economic aspect. Environmental disadvantages are discussed by performing a CO 2 inventory analysis for the life-cycle of the STWT power plant. Evaluation of the economic feasibility is done by calculating the levelized electricity cost (LEC), which is the cost per unit of electricity generated. From the calculations, it is found that overall system efficiency is increased by enlarging the capacity, the negative environmental impact by the STWT plant comes mainly from manufacturing stage (more than 60%), and the levelized electricity cost is dramatically decreased by enlarging the capacity of the system (about 50% reduction). A negative value of Triple I (meaning it is sustainable) can be achieved for high power generation capacity (above 100 MW). Moreover, this paper discusses the implementation and the potential of constructing offshore STWTs.

Keywords: cost of electricity; environmental impact assessment; ecological footprint; offshore solar power; solar chimney; thermal wind; Triple I (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3181/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3181/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3181-:d:183316

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3181-:d:183316