Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review
Shoukat A. Khan,
Muataz A. Atieh and
Muammer Koç
Additional contact information
Shoukat A. Khan: Sustainable Development Division (SDD), College of Science and Engineering (CSE), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar
Muataz A. Atieh: Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar
Muammer Koç: Sustainable Development Division (SDD), College of Science and Engineering (CSE), Hamad bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha P.O. Box 5825, Qatar
Energies, 2018, vol. 11, issue 11, 1-30
Abstract:
Nucleate boiling is a phase change heat transfer process with a wide range of applications i.e., steam power plants, thermal desalination, heat pipes, domestic heating and cooling, refrigeration and air-conditioning, electronic cooling, cooling of turbo-machinery, waste heat recovery and much more. Due to its quite broad range of applications, any improvement in this area leads to significant economic, environmental and energy efficiency outcomes. This paper presents a comprehensive review and critical analysis on the recent developments in the area of micro-nano scale coating technologies, materials, and their applications for modification of surface geometry and chemistry, which play an important role in the enhancement of nucleate boiling heat transfer. In many industrial applications boiling is a surface phenomenon, which depends upon its variables such as surface area, thermal conductivity, wettability, porosity, and roughness. Compared to subtractive methods, the surface coating is more versatile in material selection, simple, quick, robust in implementation and is quite functional to apply to already installed systems. The present status of these techniques for boiling heat transfer enhancement, along with their future challenges, enhancement potentials, limitations, and their possible industrial implementation are also discussed in this paper.
Keywords: nucleate boiling; phase change heat transfer; energy efficiency; surface coating; pool and flow boiling; heat exchangers (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3189/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3189/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3189-:d:183488
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().