EconPapers    
Economics at your fingertips  
 

Laboratory and Numerical Investigation on Strength Performance of Inclined Pillars

Kashi Vishwanath Jessu, Anthony J. S. Spearing and Mostafa Sharifzadeh
Additional contact information
Kashi Vishwanath Jessu: Western Australian School of Mines, Curtin University, Kalgoorlie 6430, Australia
Anthony J. S. Spearing: Western Australian School of Mines, Curtin University, Kalgoorlie 6430, Australia
Mostafa Sharifzadeh: Western Australian School of Mines, Curtin University, Kalgoorlie 6430, Australia

Energies, 2018, vol. 11, issue 11, 1-17

Abstract: Pillars play a critical role in an underground mine, as an inadequate pillar design could lead to pillar failure, which may result in catastrophic damage, while an over-designed pillar would lead to ore loss, causing economic loss. Pillar design is dictated by the inclination of the ore body. Depending on the orientation of the pillars, loading can be axial (compression) in horizontal pillars and oblique (compression as well as shear loading) in inclined pillars. Empirical and numerical approaches are the two most commonly used methods for pillar design. Current empirical approaches are mostly based on horizontal pillars, and the inclination of the pillars in the dataset is not taken into consideration. Laboratory and numerical studies were conducted with different width-to-height ratios and at different inclinations to understand the reduction in strength due to inclined loading and to observe the failure mechanisms. The specimens’ strength reduced consistently over all the width-to-height ratios at a given inclination. The strength reduction factors for gypsum were found to be 0.78 and 0.56, and for sandstone were 0.71 and 0.43 at 10° and 20° inclinations, respectively. The strength reduction factors from numerical models were found to be 0.94 for 10° inclination, 0.87 for 20° inclination, 0.78 for 30° inclination, and 0.67 for 40° inclination, and a fitting equation was proposed for the strength reduction factor with respect to inclination. The achieved results could be used at preliminary design stages and can be verified during real mining practice.

Keywords: pillars; inclination; oblique loading; width-to-height ratio; strength reduction factors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/3229/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/3229/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:3229-:d:184411

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3229-:d:184411