EconPapers    
Economics at your fingertips  
 

Computer-Aided Design of Digital Compensators for DC/DC Power Converters

Pablo Zumel, Cristina Fernández, Marlon A. Granda, Antonio Lázaro and Andrés Barrado
Additional contact information
Pablo Zumel: Grupo de Sistemas Electrónicos de Potencia, Departamento de Tecnología Electrónica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
Cristina Fernández: Grupo de Sistemas Electrónicos de Potencia, Departamento de Tecnología Electrónica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
Marlon A. Granda: Grupo de Sistemas Electrónicos de Potencia, Departamento de Tecnología Electrónica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
Antonio Lázaro: Grupo de Sistemas Electrónicos de Potencia, Departamento de Tecnología Electrónica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
Andrés Barrado: Grupo de Sistemas Electrónicos de Potencia, Departamento de Tecnología Electrónica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain

Energies, 2018, vol. 11, issue 12, 1-21

Abstract: Digital control of high-frequency power converters has been used extensively in recent years, providing flexibility, enhancing integration, and allowing for smart control strategies. The core of standard digital control is the discrete linear compensator, which can be calculated in the frequency domain using well-known methods based on the frequency response requirements (crossover frequency, f c , and phase margin, PM ). However, for a given compensator topology, it is not possible to fulfill all combinations of crossover frequency and phase margin, due to the frequency response of the controlled plant and the limitations of the compensator. This paper studies the performance space ( f c , PM ) that includes the set of achievable crossover frequencies and phase margin requirements for a combination of converter topology, compensator topology, and sensors, taking into account the effects of digital implementation, such as delays and limit cycling. Regarding limit cycling, two different conditions have been considered, which are related to the design of the digital compensator: a limited compensator integral gain, and a minimum gain margin. This approach can be easily implemented by a computer to speed up the calculations. The performance space provides significant insight into the control design, and can be used to compare compensator designs, select the simplest compensator topology to achieve a given requirement, determine the dynamic limitations of a given configuration, and analyze the effects of delays in the performance of the control loop. Moreover, a figure of merit is proposed to compare the dynamic performance of the different designs. The main goal is to provide a tool that identifies the most suitable compensator design in terms of the dynamic performance, the complexity of the implementation, and the computational resources. The proposed procedure to design the compensator has been validated in the laboratory using an actual DC/DC converter and a digital hardware controller. The tests also validate the theoretical performance space and the most suitable compensator design for a given dynamic specification.

Keywords: power converters; digital control; design space; frequency domain (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/12/3251/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/12/3251/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:12:p:3251-:d:184770

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3251-:d:184770