Stabilization of High-Organic-Content Water Treatment Sludge by Pyrolysis
Ye-Eun Lee,
I-Tae Kim and
Yeong-Seok Yoo
Additional contact information
Ye-Eun Lee: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea
I-Tae Kim: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea
Yeong-Seok Yoo: Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea
Energies, 2018, vol. 11, issue 12, 1-14
Abstract:
Water treatment sludge from algal blooms were analyzed and compared with general water treatment sludge as the pyrolysis temperature was varied from 300 °C to 900° C. Elemental analysis showed that the water treatment sludge in the eutrophication region has ~12% carbon content, higher than that (8.75%) of general water treatment sludge. X-ray diffraction (XRD) analysis of both types of sludge showed that amorphous silica changed to quartz and weak crystalline structures like kaolinite or montmorillonite were decomposed and changed into stronger crystalline forms like albite. Fourier transform infrared spectroscopy (FT-IR) peaks of humic/fulvic acid that indicated the affinity to combine with heavy metals disappeared above 700 °C. Toxicity characteristic leaching procedure (TCLP), conducted to determine the heavy metal leaching amount of pyrolyzed water treatment sludge, showed the lowest value of 5.7 mg/kg at 500 °C when the humic acid was not decomposed. At 500 °C, the heavy metal leaching ratio to the heavy metal content of high organic content water treatment sludge and low organic content water treatment sludge were 1.87% and 3.19%, respectively, and the water treatment sludge of higher organic content was more stable. In other words, pyrolysis of water treatment sludge with high organic content at 500 °C increases the inorganic matter crystallinity and heavy metal leaching stability.
Keywords: biochar; organic matter; heavy metal leaching; water treatment sludge; pyrolysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/12/3292/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/12/3292/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:12:p:3292-:d:185463
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().