EconPapers    
Economics at your fingertips  
 

Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation

Jonas Kazda and Nicolaos Antonio Cutululis
Additional contact information
Jonas Kazda: Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
Nicolaos Antonio Cutululis: Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark

Energies, 2018, vol. 11, issue 12, 1-19

Abstract: The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control.

Keywords: wind farm; dynamic flow model; control; linear; prediction; Kalman filter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/12/3346/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/12/3346/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:12:p:3346-:d:186786

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3346-:d:186786