EconPapers    
Economics at your fingertips  
 

Expected Global Warming Impacts on the Spatial Distribution and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France

Emmanuel Garbolino, Warren Daniel and Guillermo Hinojos Mendoza
Additional contact information
Emmanuel Garbolino: MINES ParisTech / Paris Sciences et Lettres PSL Université Paris, Centre for research on Risks and Crises (CRC), 1 rue Claude Daunesse, CS 10207, 06904 Sophia Antipolis CEDEX, France
Warren Daniel: Warren DANIEL, Plant and Ecosystems (PLECO), University of Antwerp, Campus Drie Eiken - C 0.13, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
Guillermo Hinojos Mendoza: Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Periférico Francisco R. Almada Km. 1, Chihuahua 31000, Mexico

Energies, 2018, vol. 11, issue 12, 1-17

Abstract: The development of collective and industrial energy systems, based on wood biomass, knows a significant increase since the end of the 90’s in France, with more than 6000 power plants and heating plants developed currently. Because these systems are built for a minimal duration of 30 years, it is relevant to assess the availability of wood resources according to the potential impacts of global warming on five tree species mainly used in such a supply chain. The assessment of the potential spatial distribution of the suitable areas of these trees in 2050, by using the IPCC (Intergovernmental Panel on Climate Change) RCP6.0 scenario (Representative Concentration Pathway), shows an average decrease of 22% of the plots in comparison with the current situation. The results also point out that mountain areas would maintain a high probability of the development of four tree species. The assessment of the Net Primary Productivity (NPP) underlines a potential decrease for 93% of the plots in 2050, and an increase of this parameter in mountain areas. According to these assumptions, the proposed ecosystem based methodology can be considered as a prospective approach to support stakeholders’ decisions for the development of the wood energy supply chain.

Keywords: biomass; climate change; impact; ecosystems; supply chain; sustainability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/12/3372/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/12/3372/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:12:p:3372-:d:187167

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3372-:d:187167