A Practical Approach to Localize Simultaneous Triple Open-Switches for a PWM Inverter-Fed Permanent Magnet Synchronous Machine Drive System
Jae-Hwan Song and
Kyeong-Hwa Kim
Additional contact information
Jae-Hwan Song: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Kyeong-Hwa Kim: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Energies, 2018, vol. 11, issue 1, 1-23
Abstract:
In order to overcome the limitations of conventional diagnosis methods, this paper proposes a reliable and practical on-line fault localization scheme for a pulse width modulation (PWM) inverter-fed permanent magnet synchronous machine (PMSM) drive system even when the inverter has simultaneous open faults in up to three switches. An open-switch fault is usually initiated by an accidental over-current, or electrical and thermal stresses. This fault may induce crucial secondary damage in the drive system since it is easily propagated and produces a continuous harmful effect on other system components. The open-switch faults in inverters often occur in a very complicated manner. Due to this reason, it was only recently that real-time diagnosis schemes under the open-switch faults in multiple switches have been presented in a few references. However, to alleviate the complexity and exactness issues, most of the conventional diagnosis schemes have considered the open faults only in two simultaneous switches until now, which is not generally the case. Even though the fault detection is simple and immediate, the exact fault localization is not a simple task, especially when there are open faults in three simultaneous switches because different open-switch fault locations may develop the same fault signature. To deal with such a problem, free-wheeling mode detection is introduced in this paper for the purpose of identifying the exact fault group and the faulty switch location. Then main objective of this paper is to realize a reliable fault localization algorithm under the condition of simultaneous open-switches (up to three) on an online basis without requiring any extra hardware or sensors in order that the algorithm can be easily installed in main CPU of a commercial drive system. For this purpose, the open faults in simultaneous switches are categorized into seven different fault groups. The entire system is implemented on a digital controller by using TMS320F28335 digital signal processor (DSP). The experimental results are presented under various open fault conditions to validate the usefulness of the proposed open-switch fault localization scheme.
Keywords: free-wheeling mode detection; PWM inverter; reliable on-line fault localization; seven fault groups; three simultaneous open-switches (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/1/101/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/1/101/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:1:p:101-:d:125183
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().