Hydration of Magnesium Carbonate in a Thermal Energy Storage Process and Its Heating Application Design
Rickard Erlund and
Ron Zevenhoven
Additional contact information
Rickard Erlund: Thermal and Flow Engineering Laboratory, Åbo Akademi University, 20900 Turku, Finland
Ron Zevenhoven: Thermal and Flow Engineering Laboratory, Åbo Akademi University, 20900 Turku, Finland
Energies, 2018, vol. 11, issue 1, 1-16
Abstract:
First ideas of applications design using magnesium (hydro) carbonates mixed with silica gel for day/night and seasonal thermal energy storage are presented. The application implies using solar (or another) heat source for heating up the thermal energy storage (dehydration) unit during daytime or summertime, of which energy can be discharged (hydration) during night-time or winter. The applications can be used in small houses or bigger buildings. Experimental data are presented, determining and analysing kinetics and operating temperatures for the applications. In this paper the focus is on the hydration part of the process, which is the more challenging part, considering conversion and kinetics. Various operating temperatures for both the reactor and the water (storage) tank are tested and the favourable temperatures are presented and discussed. Applications both using ground heat for water vapour generation and using water vapour from indoor air are presented. The thermal energy storage system with mixed nesquehonite (NQ) and silica gel (SG) can use both low (25–50%) and high (75%) relative humidity (RH) air for hydration. The hydration at 40% RH gives a thermal storage capacity of 0.32 MJ/kg while 75% RH gives a capacity of 0.68 MJ/kg.
Keywords: thermal energy storage; magnesium (hydro) carbonate; adsorption; heating systems; silica gel; geothermal heat; exhaust air heat pump (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/1/170/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/1/170/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:1:p:170-:d:126367
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().