EconPapers    
Economics at your fingertips  
 

Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature

Yongtao Shen, Ruihua Wei and Lihong Xu
Additional contact information
Yongtao Shen: College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
Ruihua Wei: College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
Lihong Xu: College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

Energies, 2018, vol. 11, issue 1, 1-17

Abstract: Greenhouses are high energy-consuming and anti-seasonal production facilities. In some cases, energy consumption in greenhouses accounts for 50% of the cost of greenhouse production. The high energy consumption has become a major factor hindering the development of greenhouses. In order to improve the energy efficiency of the greenhouse, it is important to predict its energy consumption. In this study, the energy consumption mathematical model of a Venlo greenhouse is established based on the principle of energy conservation. Three optimization algorithms are used to identify the parameters which are difficult to determine in the energy consumption model. In order to examine the accuracy of the model, some verifications are made. The goal of achieving high yield, high quality and high efficiency production is a problem in the study of greenhouse environment control. Combining the prediction model of greenhouse energy consumption with the relatively accurate weather forecast data for the next week, the energy consumption of greenhouse under different weather conditions is predicted. Taking the minimum energy consumption as the objective function, the indoor daily average temperatures of 7 days are optimized to provide the theoretical reference for the decision-making of heating in the greenhouse. The results show that the optimized average daily temperatures save 9% of the energy cost during a cold wave.

Keywords: greenhouse; energy; model; prediction; optimization algorithms; optimizing average temperature (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/1/65/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/1/65/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:1:p:65-:d:124986

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:65-:d:124986