EconPapers    
Economics at your fingertips  
 

Thermodynamic and Environmental Analysis of Scaling up Cogeneration Units Driven by Sugarcane Biomass to Enhance Power Exports

João Paulo Guerra, Fernando Henrique Cardoso, Alex Nogueira and Luiz Kulay
Additional contact information
João Paulo Guerra: Chemical Engineering Department, Polytechnic School of the University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 18—Conjunto das Químicas, São Paulo 05508-000, SP, Brazil
Fernando Henrique Cardoso: Chemical Engineering Department, Polytechnic School of the University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 18—Conjunto das Químicas, São Paulo 05508-000, SP, Brazil
Alex Nogueira: Chemical Engineering Department, Polytechnic School of the University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 18—Conjunto das Químicas, São Paulo 05508-000, SP, Brazil
Luiz Kulay: Chemical Engineering Department, Polytechnic School of the University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 18—Conjunto das Químicas, São Paulo 05508-000, SP, Brazil

Energies, 2018, vol. 11, issue 1, 1-23

Abstract: When manual harvesting of sugarcane was discontinued in many regions of Brazil, interest in power generation by burning the bagasse and straw in cogeneration units rose. Exergy analysis is often applied to increase the thermodynamic yield of these plants by identifying irreversibility and work availability. Conversely, pressure for adopting clean energy requires these systems to be evaluated for suitable environmental performance. This study identified and discussed the thermodynamic and environmental effects of scaling up systems that operate according Rankine cycle with reheating. Ten scenarios have been designed considering different levels of steam pressure and addition rates of straw remaining in the sugarcane cultivation. The thermodynamic analysis revealed a 37% improvement in the exergy efficiency and 63% of increasing in power generation to raise the steam pressure from 20 to 100 bar. Moreover, the use of 50% of residual straw into units operating at 100 bar can more than double the amount of electricity exported. If addressed considering a life cycle perspective, the use of straw improves the environmental performance of the cogeneration for Climate Change and Particle Matter Formation but provides additional impacts in terms of Water and Fossil resources depletions.

Keywords: cogeneration; sugarcane biomass; exergy analysis; Life Cycle Assessment; bioelectricity; Rankine cycle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/1/73/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/1/73/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:1:p:73-:d:124978

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:73-:d:124978