Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell
Sun-Joon Byun,
Zhen Huan Wang,
Jun Son,
Dong-Kurl Kwak and
Young-Chul Kwon
Additional contact information
Sun-Joon Byun: SFR NSSS System Design Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon 34057, Korea
Zhen Huan Wang: Department of Mechanical Engineering, Sunmoon University, 221-70 Sunmoon-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do 31460, Korea
Jun Son: Department of Mechanical Engineering, Sunmoon University, 221-70 Sunmoon-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do 31460, Korea
Dong-Kurl Kwak: Graduate School of Disaster Prevention, Kangwon National University, 346 Joongang-ro, Samcheck-si, Gangwon-do 25913, Korea
Young-Chul Kwon: Department of Mechanical Engineering, Sunmoon University, 221-70 Sunmoon-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do 31460, Korea
Energies, 2018, vol. 11, issue 2, 1-14
Abstract:
We propose a wave-like design on the surface of cathode channels (wave form cathode channels) to improve oxidant delivery to gas diffusion layers (GDLs). We performed experiments using proton-exchange membrane fuel cells (PEMFCs) combined with wave form surface design on cathodes. We varied the factors of the distance between wave-bumps (the adhesive distance, AD), and the size of the wave-bumps (the expansion ratio, ER). The ADs are three, four, and five times the size of the half-circle bump’s radius, and the ERs are two-thirds, one-half, and one-third of the channel’s height. We evaluated the performances of the fuel cells, and compared the current-voltage (I-V) relations. For comparison, we prepared PEMFCs with conventional flat-surfaced oxygen channels. Our aim in this work is to identify fuel cell operation by modifying the surface design of channels, and ultimately to find the optimal design of cathode channels that will maximize fuel cell performance.
Keywords: wave form; PEMFC; cathode channel; gas diffusion layer (GDL); adhesive distance (AD); expansion ratio (ER) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/2/319/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/2/319/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:2:p:319-:d:129901
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().