Determination of the Structural Characteristics of Microalgal Cells Walls under the Influence of Turbulent Mixing Energy in Open Raceway Ponds
Haider Ali,
Taqi Ahmad Cheema and
Cheol Woo Park
Additional contact information
Haider Ali: School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
Taqi Ahmad Cheema: Department of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Pakistan
Cheol Woo Park: School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
Energies, 2018, vol. 11, issue 2, 1-19
Abstract:
Turbulent flow mixing is essential in optimizing microalgal cultivation in raceway ponds. Microalgal cells are however highly sensitive to hydrodynamic stresses produced by turbulent mixing because of their small size. The mechanical properties (wall deformation and von Misses stress) of the microalgal cell wall structure under the influence of turbulent mixing are yet to be explored. High turbulence magnitudes damage microalgal cell walls by adversely affecting their mechanical properties which consequently destroy the microalgal cells and reduce the biofuel production. Therefore, such a study is required to improve the biofuel productivity of microalgal cells before their cell wall damage in raceway pond. This study developed a novel fluid–structure interaction (FSI)-based numerical model to investigate the effects of turbulent mixing on the cell wall damage of microalgal cells in raceway ponds. The study investigated microalgal cell wall damage at four different locations in a raceway pond in consideration of the effects of pond’s hydrodynamic and geometric properties. An experiment was conducted with a laboratory-scale raceway pond to compare and validate the numerical results by using time-dependent water velocities. Microalgal cell wall shear stress, cell wall deformation, and von Misses stress in the raceway pond were investigated by considering the effects of aspect ratios, water depths, and paddle wheel rotational speeds. Results showed that the proposed numerical model can be used as a prerequisite method for the selection of appropriate turbulent mixing. Microalgal cell wall damage is high in shallow and narrow raceway ponds with high paddle rotational speeds.
Keywords: raceway pond; turbulent mixing; microalgal cell wall damage; FSI; wall deformation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/2/388/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/2/388/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:2:p:388-:d:130676
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().