On the Performance Optimization of Two-Level Three-Phase Grid-Feeding Voltage-Source Inverters
Issam A. Smadi,
Saher Albatran and
Hamzeh J. Ahmad
Additional contact information
Issam A. Smadi: Department of Electrical Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
Saher Albatran: Department of Electrical Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
Hamzeh J. Ahmad: Department of Electrical Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
Energies, 2018, vol. 11, issue 2, 1-17
Abstract:
The performance optimization of the two-level, three-phase, grid-feeding, voltage-source inverter (VSI) is studied in this paper, which adopts an online adaptive switching frequency algorithm (OASF). A new degree of freedom has been added to the employed OASF algorithm for optimal selection of the weighting factor and overall system optimization design. Toward that end, a full mathematical formulation, including the impact of the coupling inductor and the controller response time, is presented. At first, the weighting factor is selected to favor the switching losses, and the controller gains are optimized by minimizing the integral time-weighted absolute error (ITAE) of the output active and reactive power. Different loading and ambient temperature conditions are considered to validate the optimized controller and its fast response through online field programmable gate array (FPGA)-in-the-loop. Then, the weighting factor is optimally selected to reduce the cost of the L-filter and the heat-sink. An optimization problem to minimize the cost design at the worst case of loading condition for grid-feeding VSI is formulated. The results from this optimization problem are the filter inductance, the thermal resistance of the heat-sink, and the optimal switching frequency with the optimal weighting factor. The VSI test-bed using the optimized parameters is used to verify the proposed work experimentally. Adopting the OASF algorithm that employs the optimal weighting factor for grid-feeding VSI, the percentages of the reductions in the slope of the steady state junction temperature profile compared to fixed frequencies of 10 kHz, 14.434 kHz, and 20 kHz are about 6%, 30%, and 18%, respectively.
Keywords: grid-feeding inverter; multi-objective optimization; switching losses; switching frequency; total demand distortion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/2/400/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/2/400/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:2:p:400-:d:130993
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().