EconPapers    
Economics at your fingertips  
 

Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine

Ayodeji Sowale and Athanasios J. Kolios
Additional contact information
Ayodeji Sowale: Offshore Renewable Energy Engineering Centre, School of Water, Energy and Environment, Whittle Building 52, Cranfield University, Cranfield MK43 0AL, UK
Athanasios J. Kolios: Offshore Renewable Energy Engineering Centre, School of Water, Energy and Environment, Whittle Building 52, Cranfield University, Cranfield MK43 0AL, UK

Energies, 2018, vol. 11, issue 3, 1-20

Abstract: There is an increasing request in energy recovery systems that are more efficient, environmentally friendly and economical. The free piston Stirling engine has been investigated due to its structural simplicity and high efficiency, coupled with its cogeneration ability. This study presents the numerical investigation of quasi-steady model of a gamma type free piston Stirling engine (FPSE), including the thermodynamic analysis of the heat exchangers. Advanced thermodynamic models are employed to derive the initial set of operational parameters of the FPSE due to the coupling of the piston’s (displacer and piston) dynamics and the working process. The proximity effect of the heater and cooler on the regenerator effectiveness in relation to the heat losses, output power, net work and thermal efficiency of the FPSE are also observed and presented in this study. It can be observed that at temperatures of 541.3 °C and 49.8 °C of the heater and cooler, respectively, with heater volume of 0.004 m 3 , regenerator volume of 0.003 m 3 and cooler volume of 0.005 m 3 , the FPSE produced an output performance of 996.7 W with a thermal efficiency of 23% at a frequency of 30 Hz. This approach can be employed to design effective high performance FPSE due to their complexity and also predict a satisfactory performance.

Keywords: Stirling engine; free piston Stirling engine; heat exchanger; thermodynamic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/3/505/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/3/505/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:3:p:505-:d:133681

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:505-:d:133681