Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit
Hansol Lim,
Seong-Yong Cheon and
Jae-Weon Jeong
Additional contact information
Hansol Lim: Department of Architectural Engineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Korea
Seong-Yong Cheon: Department of Architectural Engineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Korea
Jae-Weon Jeong: Department of Architectural Engineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Korea
Energies, 2018, vol. 11, issue 3, 1-14
Abstract:
This study aims to estimate the performance of thermoelectric module (TEM) heat pump for simultaneous liquid cooling and heating and propose empirical models for predicting the heat exchange effectiveness. The experiments were conducted to investigate and collect the performance data of TEM heat pump where the working fluid was water. A total of 57 sets of experimental data were statistically analyzed to estimate the effects of each independent variable on the heat exchange effectiveness using analysis of variance (ANOVA). To develop the empirical model, the six design parameters were measured: the number of transfer units ( NTU ) of the heat exchangers (i.e., water blocks), the inlet water temperatures and temperatures of water blocks at the cold and hot sides of the TEM. As a result, two polynomial equations predicting heat exchange effectiveness at the cold and hot sides of the TEM heat pump were derived as a function of the six selected design parameters. Also, the proposed models and theoretical model of conventional condenser and evaporator for heat exchange effectiveness were compared with the additional measurement data to validate the reliability of the proposed models. Consequently, two conclusions have been made: (1) the possibility of using the TEM heat pump for simultaneous cooling and heating was examined with the maximum temperature difference of 30 °C between cold and hot side of TEM, and (2) it is revealed that TEM heat pump has difference with the conventional evaporator and condenser from the comparison results between the proposed models and theoretical model due to the heat conduction and Joule effect in TEM.
Keywords: thermoelectric module; thermoelectric heat pump; non-vapor compression system; empirical model; heat exchange effectiveness (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/3/580/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/3/580/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:3:p:580-:d:135170
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().