Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method
Jintae Kim and
Chung-Yuen Won
Additional contact information
Jintae Kim: Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Korea
Chung-Yuen Won: Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Korea
Energies, 2018, vol. 11, issue 4, 1-13
Abstract:
An improved modulated carrier control (MCC) method is proposed to offer high power factor (PF) and low total harmonic distortion (THD) at a wide input voltage range and load variation. The conventional MCC method not only requires a multiplier and divider, but also is hard to be implemented with a micro controller unit without a high frequency oscillator. To overcome the problem and maintain the advantages of the conventional MCC method, the proposed MCC method adopts a current integrator, an output voltage amplifier, a zero-current duration (ZCD) demodulator of the boost inductor, and a carrier generator. Thus, it can remove a multiplier and well, as it allows for being operable with a general micro control unit. This paper presents an operation principle of the proposed control method. To verify the proposed control method, experimental results with 400 W PFC boost converter is demonstrated.
Keywords: modulated carrier control; ac-dc power converters; power factor correction (PFC); power conversion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/4/717/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/4/717/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:4:p:717-:d:137598
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().