Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference
Francesc Pozo,
Yolanda Vidal and
Óscar Salgado
Additional contact information
Francesc Pozo: Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 16, 08019 Barcelona, Spain
Yolanda Vidal: Control, Modeling, Identification and Applications (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB), Eduard Maristany, 16, 08019 Barcelona, Spain
Óscar Salgado: Mechanical Engineering, IK4-Ikerlan, J.M. Arizmendiarrieta 2, 20500 Arrasate (Gipuzkoa), Spain
Energies, 2018, vol. 11, issue 4, 1-19
Abstract:
This article states a condition monitoring strategy for wind turbines using a statistical data-driven modeling approach by means of supervisory control and data acquisition (SCADA) data. Initially, a baseline data-based model is obtained from the healthy wind turbine by means of multiway principal component analysis (MPCA). Then, when the wind turbine is monitorized, new data is acquired and projected into the baseline MPCA model space. The acquired SCADA data are treated as a random process given the random nature of the turbulent wind. The objective is to decide if the multivariate distribution that is obtained from the wind turbine to be analyzed (healthy or not) is related to the baseline one. To achieve this goal, a test for the equality of population means is performed. Finally, the results of the test can determine that the hypothesis is rejected (and the wind turbine is faulty) or that there is no evidence to suggest that the two means are different, so the wind turbine can be considered as healthy. The methodology is evaluated on a wind turbine fault detection benchmark that uses a 5 MW high-fidelity wind turbine model and a set of eight realistic fault scenarios. It is noteworthy that the results, for the presented methodology, show that for a wide range of significance, ? ? [ 1 % , 13 % ] , the percentage of correct decisions is kept at 100%; thus it is a promising tool for real-time wind turbine condition monitoring.
Keywords: wind turbine; condition monitoring; fault detection; principal component analysis; multivariate statistical hypothesis testing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/4/749/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/4/749/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:4:p:749-:d:138083
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().