Influence of the Applied Working Fluid and the Arrangement of the Steering Edges on Multi-Vane Expander Performance in Micro ORC System
Józef Rak,
Przemysław Błasiak and
Piotr Kolasiński
Additional contact information
Józef Rak: Department of Thermodynamics, Theory of Machines and Thermal Systems, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
Przemysław Błasiak: Department of Thermodynamics, Theory of Machines and Thermal Systems, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
Piotr Kolasiński: Department of Thermodynamics, Theory of Machines and Thermal Systems, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
Energies, 2018, vol. 11, issue 4, 1-16
Abstract:
Micro-power domestic organic Rankine cycle (ORC) systems are nowadays of great interest. These systems are considered for combined heat and power (CHP) generation in domestic and distributed applications. The main issues of ORC systems design is selection of the expander and the working fluid. Thanks to their positive features, multi-vane expanders are especially promising for application in micro-power ORC systems. These expanders are very simple in design, small in dimensions, inexpensive and feature low gas flow capacity and expansion ratio. The application of multi-vane expanders in ORC systems is innovative and currently limited to prototype applications. However, a literature review indicates the growing interest in these machines and the potential for practical implementation. For this reason, it is necessary to conduct detailed studies on the multi-vane expanders operation in ORC systems. In this paper the results of experimental and numerical investigations on the influence of the applied working fluid and the arrangement of the steering edges on multi-vane expander performance in micro ORC system are reported. The experiments were performed using the specially designed lab test-stand, i.e. the domestic ORC system. Numerical simulations were proceeded in ANSYS CFX software (ANSYS, Inc., Canonsburg, PA, USA) and were focused on determining the expander performance under various flow conditions of different working fluids. Detailed numerical analysis of the arrangement of the machine steering edges showed existence of optimal mutual position of the inlet and outlet port for which the multi-vane expander achieves maximum internal work and internal efficiency.
Keywords: ORC; working fluid; multi-vane expander; numerical analysis; experimental analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/4/892/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/4/892/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:4:p:892-:d:140508
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().