EconPapers    
Economics at your fingertips  
 

Energy-Saving Potential of China’s Steel Industry According to Its Development Plan

Kun He, Li Wang, Hongliang Zhu and Yulong Ding
Additional contact information
Kun He: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Li Wang: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Hongliang Zhu: Hanbao Steel Energy Center, Handan 056015, China
Yulong Ding: Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK

Energies, 2018, vol. 11, issue 4, 1-16

Abstract: The energy consumption of China’s steel industry accounted for 53% of the global steel industry energy consumption in 2014. This paper aims to analyze the energy saving potential of China’s steel industry, according to its development plan of the next decade, and find the key of energy conservation. A multivariate energy intensity (MEI) model is developed for energy saving potential analysis based on the research on China’s energy statistics indexes and methods, which is able to capture the impacts of production routes, technology progress, industrial concentration, energy structure, and electricity (proportion and generation efficiency). Different scenarios have been set to describe future policy measures in relation to the development of the iron and steel industry. Results show that an increasing scrap ratio (SR) has the greatest energy saving effect of 16.8% when compared with 2014, and the maximum energy saving potential reaches 23.7% after counting other factors. When considering coal consumption of power generation, the energy saving effect of increasing SR drops to 7.9%, due to the increase on the proportion of electricity in total energy consumption, and the maximum energy saving potential is 15.5%, and they can increase to 10.1% and 17.5%, respectively, with improving China’s power generation technology level.

Keywords: steel industry; energy-saving; energy intensity; calculation model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/4/948/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/4/948/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:4:p:948-:d:141372

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:948-:d:141372