A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions
Yunlu Li,
Junyou Yang,
Haixin Wang,
Weichun Ge and
Yiming Ma
Additional contact information
Yunlu Li: School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Junyou Yang: School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Haixin Wang: School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Weichun Ge: Liaoning Province Electric Power Company, Shenyang 110006, China
Yiming Ma: School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Energies, 2018, vol. 11, issue 4, 1-18
Abstract:
In most grid-connected power converter applications, the phase-locked loop (PLL) is probably the most widespread grid synchronization technique, owing to its simple implementation. However, its phase-tracking performance tends to worsen when the grid voltage is under unbalanced and distorted conditions. Many filtering techniques are utilized to solve this problem, however, at the cost of slowing down the transient response. It is a major challenge for PLL to achieve a satisfactory dynamic performance without degrading its filtering capability. To tackle this challenge, a hybrid filtering technique is proposed in this paper. Our idea is to eliminate the fundamental frequency negative sequence (FFNS) and other harmonic sequences at the prefiltering stage and inner loop of PLL, respectively. Second-order generalized integrators (SOGIs) are used to remove FFNS before the Park transformation. This makes moving average filters (MAFs) eliminate other harmonics with a narrowed window length, which means the time delay that is caused by MAFs is reduced. The entire hybrid filtering technique is included in a quasi-type-1 PLL structure (QT1-PLL), which can provide a rapid dynamic behavior. The small-signal model of the proposed PLL is established. Based on this model, the parameter design guidelines targeting the fast transient response are given. Comprehensive experiments are carried out to confirm the effectiveness of our method. The results show that the settling time of the proposed PLL is less than one grid cycle, which is shorter than most of the widespread PLLs. The harmonic rejection capability is also better than other methods, under both nominal and adverse grid conditions.
Keywords: phase-locked loop (PLL); synchronization; hybrid filter; harmonic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/4/973/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/4/973/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:4:p:973-:d:141781
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().