Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass
I-Ching Kuan,
Wei-Chen Kao,
Chun-Ling Chen and
Chi-Yang Yu
Additional contact information
I-Ching Kuan: Department of Bioengineering, Tatung University, Taipei 10452, Taiwan
Wei-Chen Kao: Department of Bioengineering, Tatung University, Taipei 10452, Taiwan
Chun-Ling Chen: Department of Bioengineering, Tatung University, Taipei 10452, Taiwan
Chi-Yang Yu: Department of Bioengineering, Tatung University, Taipei 10452, Taiwan
Energies, 2018, vol. 11, issue 5, 1-9
Abstract:
(1) Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2) Methods: In this study, an oleaginous yeast, Rhodotorula glutinis , was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3) Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H 2 SO 4 at 70 °C for 20 h, the fatty acid methyl ester (FAME) yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4) Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.
Keywords: biodiesel; direct transesterification; Rhodotorula glutinis; single cell oil (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1036/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1036/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1036-:d:142921
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().