Design Optimization of a Complex Polygeneration System for a Hospital
Sara Ghaem Sigarchian,
Anders Malmquist and
Viktoria Martin
Additional contact information
Sara Ghaem Sigarchian: Department of Energy Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Anders Malmquist: Department of Energy Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Viktoria Martin: Department of Energy Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Energies, 2018, vol. 11, issue 5, 1-24
Abstract:
Small-scale decentralized polygeneration systems have several energetic, economic and environmental benefits. However, using multiple energy sources and providing multiple energy services can lead to complicated studies which require advanced optimization techniques for determining optimal solutions. Furthermore, several parameters can influence the design and performance of a polygeneration system. In this study, the effects of heat load, renewable generation and storage units on the optimal design and performance of a polygeneration system for a hypothetical hospital located in northern Italy are investigated. The polygeneration system shows higher performance compared to the reference system, which is based on the separate generation of heat and power. It reduces fuel consumption by 14–32%, CO 2 emissions by 10–29% and annualized total cost by 7–19%, for various studied scenarios. The avoided fuel and electricity purchase of the polygeneration system has a positive impact on the economy. This, together with the environmental and energetic benefits if the renewable generation and use of storage devices, indicate the viability and competitiveness of the system.
Keywords: polygeneration; decentralized energy system; optimization; multi-energy system; renewable energy system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1071/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1071/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1071-:d:143422
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().