Analysis of Syngas Production from Biogas via the Tri-Reforming Process
Rei-Yu Chein and
Wen-Hwai Hsu
Additional contact information
Rei-Yu Chein: Department of Mechanical Engineering, National Chung Hsing University, Taichung City 40227, Taiwan
Wen-Hwai Hsu: Department of Mechanical Engineering, National Chung Hsing University, Taichung City 40227, Taiwan
Energies, 2018, vol. 11, issue 5, 1-18
Abstract:
The tri-reforming process was employed for syngas production from biogas at elevated pressures in this study. In the tri-reforming process, air and water were added simultaneously as reactants in addition to the main biogas components. The effects of various operating parameters such as pressure, temperature and reactant composition on the reaction performance were studied numerically. From the simulated results, it was found that methane and carbon dioxide conversions can be enhanced and a higher hydrogen/carbon monoxide ratio can be obtained by increasing the amount of air. However, a decreased hydrogen yield could result due to the reverse water–gas shift reaction. A higher level of methane conversion and hydrogen/carbon monoxide ratio can be obtained with increased water addition. However, negative carbon dioxide conversion could result due to the water–gas shift and reverse carbon dioxide methanation reactions. The dry reforming reaction resulting in positive carbon dioxide conversion can only be found at a high reaction temperature. For all cases studied, low or negative carbon dioxide conversion was found because of carbon dioxide production from methane oxidation, water–gas shift, and reverse carbon dioxide methanation reactions. It was found that carbon dioxide conversion can be enhanced in the tri-reforming process by a small amount of added water. It was also found that first-law efficiency increased with increased reaction temperature because of higher hydrogen and carbon monoxide yields. Second-law efficiency was found to decrease with increased temperature because of higher exergy destruction due to a more complete chemical reaction at high temperatures.
Keywords: biogas; tri-reforming process; syngas; methane and carbon dioxide conversion; hydrogen/carbon monoxide ratio; first-law/second-law efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1075/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1075/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1075-:d:143508
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().