Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application
James Hamilton,
Michael Negnevitsky and
Xiaolin Wang
Additional contact information
James Hamilton: Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia
Michael Negnevitsky: Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia
Xiaolin Wang: Centre for Renewable Energy and Power Systems, School of Engineering, University of Tasmania, Hobart Tasmania 7000, Australia
Energies, 2018, vol. 11, issue 5, 1-13
Abstract:
One-quarter of the world’s population lives without access to electricity. Unfortunately, the generation technology most commonly employed to advance rural electrification, diesel generation, carries considerable commercial and ecological risks. One approach used to address both the cost and pollution of diesel generation is renewable energy (RE) integration. However, to successfully integrate RE, both the stochastic nature of the RE resource and the operating characteristics of diesel generation require careful consideration. Typically, diesel generation is configured to run heavily loaded, achieving peak efficiencies within 70–80% of rated capacity. Diesel generation is also commonly sized to peak demand. These characteristics serve to constrain the possible RE penetration. While energy storage can relieve the constraint, this adds cost and complexity to the system. This paper identifies an alternative approach, redefining the low load capability of diesel generation. Low load diesel (LLD) allows a diesel engine to operate across its full capacity in support of improved RE utilization. LLD uses existing diesel assets, resulting in a reduced-cost, low-complexity substitute. This paper presents an economic analysis of LLD, with results compared to conventional energy storage applications. The results identify a novel pathway for consumers to transition from low to medium levels of RE penetration, without additional cost or system complexity.
Keywords: isolated power system; microgrid; off-grid solutions; renewable energy; low load diesel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1080/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1080/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1080-:d:143639
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().