EconPapers    
Economics at your fingertips  
 

Analysis of Capacitance to Ground Formulas for Different High-Voltage Electrodes

Jordi-Roger Riba and Francesca Capelli
Additional contact information
Jordi-Roger Riba: Electrical Engineering Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
Francesca Capelli: Department of Research & Development, SBI Connectors España, 08635 Barcelona, Spain

Energies, 2018, vol. 11, issue 5, 1-19

Abstract: Stray capacitance can seriously affect the behavior of high-voltage devices, including voltage dividers, insulator strings, modular power supplies, or measuring instruments, among others. Therefore its effects must be considered when designing high-voltage projects and tests. Due to the difficulty in measuring the effects of stray capacitance, there is a lack of available experimental data. Therefore, for engineers and researchers there is a need to revise and update the available information, as well as to have useful and reliable data to estimate the stray capacitance in the initial designs. Although there are some analytical formulas to calculate the capacitance of some simple geometries, they have a limited scope. However, since such formulas can deal with different geometries and operating conditions, it is necessary to assess their consistency and applicability. This work calculates the stray capacitance to ground for geometries commonly found in high-voltage laboratories and facilities, including wires or rods of different lengths, spheres and circular rings, the latter ones being commonly applied as corona protections. This is carried out by comparing the results provided by the available analytical formulas with those obtained from finite element method (FEM) simulation, since field simulation methods allow solving such problem. The results of this work prove the suitability and flexibility of the FEM approach, because FEM models can deal with wider range of electrodes, configurations and operating conditions.

Keywords: high-voltage; stray capacitance; finite element method; simulation; leakage current (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1090/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1090/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1090-:d:143768

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1090-:d:143768