EconPapers    
Economics at your fingertips  
 

Hierarchical Energy Management of Microgrids including Storage and Demand Response

Songli Fan, Qian Ai and Longjian Piao
Additional contact information
Songli Fan: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Qian Ai: Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Longjian Piao: Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands

Energies, 2018, vol. 11, issue 5, 1-23

Abstract: Battery energy storage (BES) and demand response (DR) are considered to be promising technologies to cope with the uncertainty of renewable energy sources (RES) and the load in the microgrid (MG). Considering the distinct prediction accuracies of the RES and load at different timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG energy management. Under this background, a hierarchical energy management framework is put forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling (DAS), hour-ahead scheduling (HAS), and real-time scheduling (RTS). In DAS, a scenario-based stochastic optimization model is established to minimize the expected operating cost of MG, while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load. Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation results on a seven-bus MG validate the effectiveness of the proposed methodology.

Keywords: battery energy storage; demand response; microgrid; multi-timescale characteristics; hierarchical energy management; uncertainty (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/5/1111/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/5/1111/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:5:p:1111-:d:144070

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1111-:d:144070