EconPapers    
Economics at your fingertips  
 

Exhaust Tuning of an Internal Combustion Engine by the Combined Effects of Variable Exhaust Pipe Diameter and an Exhaust Valve Timing System

Pauras Sawant, Michael Warstler and Saiful Bari
Additional contact information
Pauras Sawant: Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Michael Warstler: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
Saiful Bari: School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia

Energies, 2018, vol. 11, issue 6, 1-16

Abstract: Changes to engine geometry and specifications can produce better torque, power, volumetric efficiency and more. The technique known as wave tuning can lead to better engine torque and power. This paper focuses on increasing the engine torque by improving the exhaust fluid flow through the exhaust manifold. Phasing and intensity of the pressure waves in the exhaust manifold have significant effects on scavenging, valve overlapping and pumping losses. In this research, individual and combined effects of variable exhaust runner diameter and exhaust valve timing on the fluid flow from exhaust of the engine are studied using computer simulation. An engine simulation software, Ricardo Wave, is utilized in this research. The analysis is conducted on a 1-D model of a KTM 510 cc single cylinder, four-stroke Sl engine. The data gathered shows that varying only the exhaust pipe diameter continuously with speed yields an average of 4.23% improvement in torque from the original engine model. However, due to practical constraints, the diameter is limited to vary in three steps (36 mm, 45 mm and 60 mm). This has reduced the average improvement of torque to 3.78%. Varying the valve timing alone gains an average of 1.94% improvement in torque. Varying both the exhaust pipe diameter in three steps and the exhaust valve timing yields an average of 4.69% improvement in torque. This average is conducted over the engine speed ranges from 2000 to 11,000 rpm.

Keywords: engine; exhaust tuning; rarefaction wave; pressure; torque (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/6/1545/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/6/1545/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:6:p:1545-:d:152337

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1545-:d:152337