EconPapers    
Economics at your fingertips  
 

Dimethyl Carbonate as a Promising Oxygenated Fuel for Combustion: A Review

Ayoub O. G. Abdalla and Dong Liu
Additional contact information
Ayoub O. G. Abdalla: MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Dong Liu: MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Energies, 2018, vol. 11, issue 6, 1-20

Abstract: Energy shortage and environmental problems are two dominant subjects. Dimethyl carbonate (DMC) is one of the oxygenated fuels with increasing interest as the alternative to diesel fuel or additive for conventional hydrocarbon fuels. In the last decade, comprehensive studies on DMC have been carried out in terms of synthesis, use, and oxidation and combustion mechanism. DMC synthesis from greenhouse gas such as carbon dioxide can achieve the carbon circulation between air and fuel. Ethylene carbonate route is one of the most promising ways to utilize carbon dioxide and synthesize DMC in terms of particle efficiency, energy consumption per one unit of product, and net carbon dioxide emission. In addition, the results show that pure DMC in compression ignition (CI) engines or DMC addition in diesel/gasoline could decrease emissions significantly. Moreover, DMC pyrolysis form carbon dioxide before carbon monoxide which is different from other oxygenated fuels. However, DMC can produce formaldehyde during oxidation process in high concentration, which is harmful to the environment and human health as well. The present DMC kinetic model needs to update the major reactions constant through recognizing the initial decomposition routes and low-temperature oxidation. In addition, further studies on the DMC/hydrocarbon fuels mixtures for the interaction chemistry are needed.

Keywords: DMC; oxygenated fuel; emissions; performance; oxidation; decomposition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/6/1552/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/6/1552/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:6:p:1552-:d:152411

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1552-:d:152411