EconPapers    
Economics at your fingertips  
 

Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China

Sandong Zhou, Dameng Liu, Yidong Cai, Zuleima Karpyn and Yanbin Yao
Additional contact information
Sandong Zhou: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China
Dameng Liu: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China
Yidong Cai: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China
Zuleima Karpyn: John and Willie Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University, State College, PA 16802, USA
Yanbin Yao: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China

Energies, 2018, vol. 11, issue 6, 1-21

Abstract: The productive potential of coalbed methane projects is controlled by pore and fissure characteristics, which are intrinsically related to coal petrology. This work attempts to identify the influence of petrographic factors on the development of pore and fissure systems in the southern Junggar Coalfield, Northwest China. Here, Middle Jurassic coal (lignite and subbituminous) petrology in coal seam No. 45 of the southern Junggar Coalfield (SJC) is studied with respect to the characteristics of pore and fissure structure with the aid of optical microscopes, scanning electron microscopy, mercury intrusion porosimetry, and nuclear magnetic resonance analysis. Maceral analysis shows coals at the SJC are dominated by vitrinite (38–87 vol %), with moderate quantities of inertinite (1–28 vol %) and liptinite (0.5–30 vol %). Decomposition of plants occurs under slightly oxic–anoxic conditions, with good tissue retention. Four types of coal facies are classified using petrographic indices, comprising (1) lower delta plain marsh, (2) lower delta plain fen, (3) upper delta plain wet forest swamp; and (4) piedmont plain moor. Pores and fissures are generally observed in telinite, collotelinite, fusinite, and semifusinite in SJC coals, indicating that the generation of pores and fissures is strongly influenced by coal macerals. Pore and fissure structures of coals in coal facies (1) appear weakly connected, whereas those in coal facies (2) reveal good connectivity. Coals in coal facies (3) and (4) show moderate connectivity between pore and fissure structure. Therefore, pore and fissure structures are significantly controlled by coal facies. This work provides practical recommendations and implementation methods for petrological studies in future coalbed methane exploration/development in the SJC. This study also serves to predict the physical properties of pores and fissures and interpret the control mechanism of coalbed methane production using coal petrology.

Keywords: coal petrology; coal facies; low-rank coal; Junggar Basin (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/6/1556/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/6/1556/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:6:p:1556-:d:152444

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1556-:d:152444