EconPapers    
Economics at your fingertips  
 

Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors

Bohayra Mortazavi and Timon Rabczuk
Additional contact information
Bohayra Mortazavi: Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423 Weimar, Germany
Timon Rabczuk: College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

Energies, 2018, vol. 11, issue 6, 1-10

Abstract: In this short communication, we conducted first-principles calculations to explore the stability of boron monochalcogenides (BX, X = S, Se or Te), as a new class of two-dimensional (2D) materials. We predicted BX monolayers with two different atomic stacking sequences of ABBA and ABBC, referred in this work to 2H and 1T, respectively. Analysis of phonon dispersions confirm the dynamical stability of BX nanosheets with both 2H and 1T atomic lattices. Ab initio molecular dynamics simulations reveal the outstanding thermal stability of all predicted monolayers at high temperatures over 1500 K. BX structures were found to exhibit high elastic modulus and tensile strengths. It was found that BS and BTe nanosheets can show high stretchability, comparable to that of graphene. It was found that all predicted monolayers exhibit semiconducting electronic character, in which 2H structures present lower band gaps as compared with 1T lattices. The band-gap values were found to decrease from BS to BTe. According to the HSE06 results, 1T-BS and 2H-BTe show, respectively, the maximum (4.0 eV) and minimum (2.06 eV) electronic band gaps. This investigation introduces boron monochalcogenides as a class of 2D semiconductors with remarkable thermal, dynamical, and mechanical stability.

Keywords: two-dimensional semiconductor; first-principles; mechanical; thermal (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/6/1573/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/6/1573/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:6:p:1573-:d:152696

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1573-:d:152696