Heat Transfer Enhancement of TiO 2 /Water Nanofluid at Laminar and Turbulent Flows: A Numerical Approach for Evaluating the Effect of Nanoparticle Loadings
Budi Kristiawan,
Budi Santoso,
Agung Tri Wijayanta,
Muhammad Aziz and
Takahiko Miyazaki
Additional contact information
Budi Kristiawan: Department of Mechanical Engineering, Universitas Sebelas Maret, Kampus UNS Kentingan, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
Budi Santoso: Department of Mechanical Engineering, Universitas Sebelas Maret, Kampus UNS Kentingan, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
Agung Tri Wijayanta: Department of Mechanical Engineering, Universitas Sebelas Maret, Kampus UNS Kentingan, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia
Muhammad Aziz: Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Takahiko Miyazaki: Department of Energy and Environmental Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan
Energies, 2018, vol. 11, issue 6, 1-15
Abstract:
Titania-based nanofluid flowing inside a circular tube under the boundary condition of a horizontal uniformly heated wall was investigated numerically for both laminar and turbulent flows. In this work, an innovative numerical method using an Eulerian approach for the two-phase mixture model was used to simulate the flow and convective heat transfer characteristics. The effect of nanoparticle loading and Reynolds number on the flow and heat transfer characteristics was observed. The Reynolds number was 500 and 1200 for laminar flow, while for turbulent flow, the Reynolds number was varied in the range from 4000 to 14,000. A comparison with the established empirical correlations was made. The results clearly showed at the laminar and turbulent flows that the existing nanoparticles provided a considerable enhancement in the convective heat transfer. For laminar flow, the numerical results found that the enhancement in the convective heat transfer coefficient of nanofluids were 4.63, 11.47, and 20.20% for nanoparticle loadings of 0.24, 0.60, and 1.18 vol.%, respectively. On the other hand, for turbulent flow, the corresponding heat transfer increases were 4.04, 10.33, and 21.87%.
Keywords: titania; nanofluids; mixture model; convective heat transfer; laminar; turbulent (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/6/1584/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/6/1584/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:6:p:1584-:d:152925
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().