Feasibility Analysis and Performance Evaluation of a Novel Power-Split Flywheel Hybrid Vehicle
Chiwoong Song,
Dongsuk Kum and
Kyung-Soo Kim
Additional contact information
Chiwoong Song: Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea
Dongsuk Kum: The Cho Chun Shik Graduate School of Green Transportation, KAIST, Daejeon 34141, Korea
Kyung-Soo Kim: Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea
Energies, 2018, vol. 11, issue 7, 1-25
Abstract:
Despite the advantages of flywheel energy storage, including low cost, a long life-cycle, and high reliability, the flywheel hybrid vehicle (FHV) has not yet been mass-produced because it usually uses two transmissions, one for the engine and the other for the flywheel, which leads to cost, packaging, and complexity concerns. In this paper, a novel power-split flywheel hybrid powertrain (PS-FHV) that uses only one transmission is proposed to mitigate these issues. The proposed PS-FHV includes one continuously variable transmission (CVT) and three planetary gear-sets integrated with a flywheel, to provide full hybrid functionality at any speed, which leads to high fuel economy and fast acceleration performance. To prove and verify the PS-FHV operation, the system was modeled and analyzed using a lever analogy to demonstrate that the system is capable of performing power distribution and regulation control, which are required for hybrid driving modes. Using the derived model, PS-FHV driving was simulated to assess the feasibility of the proposed system and estimate its performance. The simulation results confirm that the PS-FHV is a feasible system and that, compared to hybrid electric vehicles (HEVs), it provides comparable fuel economy and better acceleration performance.
Keywords: hybrid vehicle; flywheel energy storage system; planetary gear system; mechanism (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/7/1744/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/7/1744/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:7:p:1744-:d:155987
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().