Adaptive Hydraulic Potential Energy Transfer Technology and Its Application to Compressed Air Energy Storage
Hao Fu,
Tong Jiang,
Yan Cui and
Bin Li
Additional contact information
Hao Fu: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Tong Jiang: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Yan Cui: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Bin Li: School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Energies, 2018, vol. 11, issue 7, 1-13
Abstract:
In recent years, Hydro-pneumatic cycling compressed air energy storage (HC-CAES) has become an important topic in compressed air energy storage (CAES) technology research. In HC-CAES, air is compressed by liquid and driven by electrical equipment when energy is stored, and then, liquid is used to drive the water conservancy equipment to generate electricity. In this study, adaptive hydraulic potential energy transfer technology is proposed to solve a series of problems in the HC-CAES system, including the high fluctuation range of gas potential energy, poor operating stability, low efficiency, and so on. Therefore, fluctuating potential energy can be stably transferred through the variable area hydraulic devices, which can be controlled with an on–off valve. The structure and operation scheme of the adaptive hydraulic potential energy transfer device used in the HC-CAES system are explained in detail; the device can provide a stable water head range for the highly efficient operation of water conservancy equipment. Moreover, an optimal operation scheme was determined through simulation analysis; a physical experiment platform was built to verify the feasibility of the design and stability of system operation.
Keywords: adaptive hydraulic potential energy transfer; stable water head; liquid-controlled compressed air energy storage; compressed air energy storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/7/1845/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/7/1845/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:7:p:1845-:d:157983
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().