Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables
Yuehjen E. Shao and
Yi-Shan Tsai
Additional contact information
Yuehjen E. Shao: Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan (R.O.C)
Yi-Shan Tsai: Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan (R.O.C)
Energies, 2018, vol. 11, issue 7, 1-22
Abstract:
Electricity is important because it is the most common energy source that we consume and depend on in our everyday lives. Consequently, the forecasting of electricity sales is essential. Typical forecasting approaches often generate electricity sales forecasts based on certain explanatory variables. However, these forecasting approaches are limited by the fact that future explanatory variables are unknown. To improve forecasting accuracy, recent hybrid forecasting approaches have developed different feature selection techniques (FSTs) to obtain fewer but more significant explanatory variables. However, these significant explanatory variables will still not be available in the future, despite being screened by effective FSTs. This study proposes the autoregressive integrated moving average (ARIMA) technique to serve as the FST for hybrid forecasting models. Aside from the ARIMA element, the proposed hybrid models also include artificial neural networks (ANN) and multivariate adaptive regression splines (MARS) because of their efficient and fast algorithms and effective forecasting performance. ARIMA can identify significant self-predictor variables that will be available in the future. The significant self-predictor variables obtained can then serve as the inputs for ANN and MARS models. These hybrid approaches have been seldom investigated on the electricity sales forecasting. This study proposes several forecasting models that do not require explanatory variables to forecast the industrial electricity, residential electricity, and commercial electricity sales in Taiwan. The experimental results reveal that the significant self-predictor variables obtained from ARIMA can improve the forecasting accuracy of ANN and MARS models.
Keywords: forecast; electricity sales; autoregressive integrated moving average (ARIMA); artificial neural networks; multivariate adaptive regression splines; hybrid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/7/1848/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/7/1848/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:7:p:1848-:d:158021
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().