EconPapers    
Economics at your fingertips  
 

An Improved Centralized Control Structure for Compensation of Voltage Distortions in Inverter-Based Microgrids

Morteza Afrasiabi and Esmaeel Rokrok
Additional contact information
Morteza Afrasiabi: Department of Electrical Engineering, Lorestan University, Khoramabad P. O. Box 465, Iran
Esmaeel Rokrok: Department of Electrical Engineering, Lorestan University, Khoramabad P. O. Box 465, Iran

Energies, 2018, vol. 11, issue 7, 1-13

Abstract: Recently, increased use of non-linear loads has intensified the harmonic distortion and voltage unbalance in distribution systems. Inverter Based Distributed Generators (IBDGs) can be employed as distributed compensators to improve the power quality, as well as to supply distribution systems. In this paper, an enhanced hierarchical control scheme for the compensation of voltage disturbance in an AC Micro Grid (MG) that includes of two control levels is proposed. The secondary control level is performed by a centralized controller. Data of voltage harmonics and voltage unbalance at the MG Sensitive Load Bus (SLB) is sent to the centralized controller by a measurement unit. A general case with a combined voltage harmonic and unbalance distortion is considered. The compensation coefficients for IBDG units are computed by the centralized controller, and reference commands are sent to the local controllers of the IBDG units that act as a primary level of control. In the secondary control level, harmonic analysis is performed for the MG in order to provide a guide for properly assigning the harmonics and unbalance compensation priorities to IBDGs at different locations in the distribution system. Some buses have more participation in exciting the MG resonance modes; therefore, larger harmonic compensation factors are considered for the IBDGs that are near to these buses. For other IBDGs, the voltage unbalance compensation factor is selected bigger. The control system of the IBDGs mainly includes a current controller, a virtual damping resistor loop, and a load compensation block. Effectiveness of the proposed control scheme is demonstrated through simulation studies.

Keywords: power quality; distributed generation sources; interface inverter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/7/1862/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/7/1862/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:7:p:1862-:d:158344

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1862-:d:158344