Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information
Suyang Zhou,
Yuxuan Zhuang,
Wei Gu and
Zhi Wu
Additional contact information
Suyang Zhou: School of Electrical Engineering, Southeast University, Nanjing 210000, China
Yuxuan Zhuang: School of Electrical Engineering, Southeast University, Nanjing 210000, China
Wei Gu: School of Electrical Engineering, Southeast University, Nanjing 210000, China
Zhi Wu: School of Electrical Engineering, Southeast University, Nanjing 210000, China
Energies, 2018, vol. 11, issue 8, 1-20
Abstract:
It is anticipated that the penetration of “Green-Energy” vehicles, including Electric Vehicle (EV), Fuel Cell Vehicle (FCV), and Natural Gas Vehicle (NGV) will keep increasing in next decades. The demand of refueling stations will correspondingly increase for refueling these “Green-Energy” vehicles. While such kinds of “Green-Energy” vehicles can provide both social and economic benefits, effective management of refueling various kinds of these vehicles is necessary to maintain vehicle users’ comfortabilities and refueling station’s return on investment. To tackle these problems, this paper proposes a novel energy management approach for hybrid refueling stations with EV chargers, Hydrogen pumps and gas pumps. Firstly, the detailed models of EV chargers, Hydrogen pumps with electrolyte and hydrogen tank, the gas pumps with gas tank, renewable resources, and battery energy storage systems are established. The forecasting methodologies for renewable energy, electricity price and the traffic flow are also presented to support the hybrid refueling station modeling and operation. Then, a management approach is adopted to manage the refueling various kinds of vehicles with considerations of the refueling station profitability. Finally, the proposed management approach is verified under four different kinds of tariffs- Economy-7, Economy-10, Flat-rate, and Real-Time Pricing (RTP), finding that the proposed management approach has the best performance under RTP tariff. The economic assessment of the Energy Storage System (ESS) is also performed. It is found that the ESS can make the saving up to $127 per day. Different sizes of gas storage tank are compared in the final section as well. The result shows that increasing the size of the tank does not bring attractive extra benefits with the consideration of the investment on enlarging the tank size.
Keywords: hybrid refueling station; electricity tariffs; mixed integer linear programming; integrated refueling station; optimal planning; renewable energy; battery storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/8/1991/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/8/1991/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:8:p:1991-:d:161077
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().