EconPapers    
Economics at your fingertips  
 

Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands

Alessandro Corsini and Eileen Tortora
Additional contact information
Alessandro Corsini: Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italy
Eileen Tortora: Faculty of Civil and Industrial Engineering, Sapienza Università di Roma, via Andrea Doria 3, 04100 Latina, Italy

Energies, 2018, vol. 11, issue 8, 1-18

Abstract: This study deals with the energy/water nexus on small off-grid islands. Small islands share several characteristics that hinder the introduction of new plants, such as: Energy system balance when renewable sources are introduced; water shortages, usually addressed via shipping from the mainland; environmental and historical heritage values; and, scarce land availability. In these cases, it is mandatory to detect energy/water technology integration and management solutions respecting the peculiarities and boundaries of the sites. The present work proposes a desalination plant with a primary scope of load leveler and a secondary scope of water producer. The aim is to propose a simple and non-invasive solution for energy/water management in order to limit impacts on the local environment while improving the match between renewable energy and local generation by means of desalination. This study led to an integrated system composed of local diesel engine power plant, distributed roof-top photovoltaic plants and a desalination plant, managed by a dedicated control logic. Desalination from renewable energy and power adjustments of already active diesel engines are favored. The case study refers to Ponza island, in the Tyrrhenian Sea. This paper demonstrates the effective possibility of using a desalination plant with the double purpose of water production and load levelling, providing 98% of the local water demand while mitigating the renewable energy fluctuations effects on the gen-set. Moreover, the proposed system results in a 50% CO 2eq emissions abatement over the current water supply carbon footprint.

Keywords: water-energy nexus; island; diesel engine; renewable energy; desalination (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/8/2068/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/8/2068/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:8:p:2068-:d:162677

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2068-:d:162677