Energy and Exergy Analyses of Tube Banks in Waste Heat Recovery Applications
Mustafa Erguvan and
David W. MacPhee
Additional contact information
Mustafa Erguvan: Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35041, USA
David W. MacPhee: Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35041, USA
Energies, 2018, vol. 11, issue 8, 1-15
Abstract:
In this study, energy and exergy analyses have been investigated numerically for unsteady cross-flow over heated circular cylinders. Numerous simulations were conducted varying the number of inline tubes, inlet velocity, dimensionless pitch ratios and Reynolds number. Heat leakage into the domain is modeled as a source term. Numerical results compare favorably to published data in terms of Nusselt number and pressure drop. It was found that the energy efficiency varies between 72% and 98% for all cases, and viscous dissipation has a very low effect on the energy efficiency for low Reynolds number cases. The exergy efficiency ranges from 40–64%, and the entropy generation due to heat transfer was found to have a significant effect on exergy efficiency. The results suggest that exergy efficiency can be maximized by choosing specific pitch ratios for various Reynolds numbers. The results could be useful in designing more efficient heat recovery systems, especially for low temperature applications.
Keywords: energy; exergy; CFD; entropy; tube banks; efficiency; HRSG (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/8/2094/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/8/2094/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:8:p:2094-:d:163334
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().