EconPapers    
Economics at your fingertips  
 

Deducing the Optimal Control Method for Electrochromic Triple Glazing through an Integrated Evaluation of Building Energy and Daylight Performance

Myunghwan Oh, Jaesung Park, Seungjun Roh and Chulsung Lee
Additional contact information
Myunghwan Oh: Center for Building Envelope Technology, Korea Conformity Laboratory, 595-10, Pyengsin 1-ro, Daesan-eup, Seosan-si 31900, Chungcheongnam-do, Korea
Jaesung Park: Center for Building Envelope Technology, Korea Conformity Laboratory, 73, Yangcheon 3 gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28115, Chungcheongbuk-do, Korea
Seungjun Roh: Sustainable Building Research Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea
Chulsung Lee: Center for Building Envelope Technology, Korea Conformity Laboratory, 73, Yangcheon 3 gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28115, Chungcheongbuk-do, Korea

Energies, 2018, vol. 11, issue 9, 1-22

Abstract: Electrochromic glass is anticipated as the next generation of solar control glass for construction because it can control the transmittance of the glass itself. This study analyzed building energy and light environment performance by applying electrochromic glass in triple glazing in order to verify both the solar control characteristics of electrochromic glass and its high insulation performance. This paper evaluates the performance of the electrochromic glass developed by our research team in Korea in five control conditions of varying temperatures and solar radiation levels. By analyzing the cooling and heating load, lighting energy, Daylight Glare Index (DGI), and interior illuminance when applying the selected conditions to office buildings, this paper discerns the optimal control conditions for electrochromic glass. To do so, the optical characteristic data of the electrochromic glass was analyzed via an experiment, and the creation of triple glazing for construction was conducted. The performance of electrochromic glass was evaluated by analyzing hourly and yearly data for cooling, heating load, and lighting energy during a typical day in summer and winter. From this analysis, the control condition with an outstanding performance from an energy perspective was identified. The performance of the light environment was assessed, and the EDPI overall evaluation index was used to find the electrochromic glass’ optimum control conditions for integrating energy and light environment.

Keywords: electrochromic glazing; optimum control; optical properties; heating and cooling loads; lighting energy; office building; EnergyPlus (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/9/2205/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/9/2205/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:9:p:2205-:d:165349

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2205-:d:165349