Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain
Miran Rodič,
Miro Milanovič and
Mitja Truntič
Additional contact information
Miran Rodič: Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
Miro Milanovič: Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
Mitja Truntič: Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
Energies, 2018, vol. 11, issue 9, 1-24
Abstract:
Based on the standardization in the automotive industry, systems require extensive testing, which represents significant costs regarding personnel and equipment. The testing systems must be built in such a way that a bidirectional power flow is possible between the power source and the tested system. Additionally, applied testing systems have to possess high disturbance immunity. Classical current programmed control performed using an analogue approach suffers from low disturbance rejection during switching operation. The digital control of DC–DC converter can solve this problem with the use of digital integration in a measurement chain. The integrals of values are obtained by using a Voltage Control Oscillator (VCO) and appropriate counters. Digital control of an interleaving operated bidirectional buck-boost synchronous converter can be applied in the testing system for automotive powertrains. The voltage and current measurements with the application of an integral-measurement principle act as low-pass filters, which remove the disturbances from the measured values. The digital implementation of a compensation ramp (current mode control) and method for choice of control parameters are described. All the tasks for measurements, as well as current and voltage control, were implemented within the FPGA (Field Programmable Gate Array). The presented converter can operate as a close to ideal voltage or current source, and satisfies the requirements of testing electric motor drive-trains with bidirectional DC–AC converters that are applied in automotive applications. The proposed system was verified by simulation and experiments.
Keywords: power electronics converter; voltage and current control; measured integrals by using VCOs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/9/2290/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/9/2290/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:9:p:2290-:d:166734
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().