EconPapers    
Economics at your fingertips  
 

Cyclic Assessment of Magnesium Oxide with Additives as a Thermochemical Material to Improve the Mechanical Strength and Chemical Reaction

Taesu Yim, Hong Soo Kim and Jae Yong Lee
Additional contact information
Taesu Yim: Korea Institute of Energy Research, Daejeon 34129, Korea
Hong Soo Kim: Korea Institute of Energy Research, Daejeon 34129, Korea
Jae Yong Lee: Korea Institute of Energy Research, Daejeon 34129, Korea

Energies, 2018, vol. 11, issue 9, 1-15

Abstract: Heat storage with a thermochemical reaction has the advantages of a high heat storage density and no heat loss compared to conventional methods such as the sensible and latent heat. This method is promising to use in a thermal energy network because it is an efficient solution which addresses the time mismatch problem with regard to heat production and consumption. In this paper, we investigated Magnesium oxide (MgO) with different additives as a thermochemical material (TCM) coupled with the effects of several additives in an effort to improve the structural strength and reaction rate and reduce the initiation time. As additives in an MgO composite, Bentonite, Magnesium sulfate (MgSO 4 ), and Zeolite 13X were chosen. With a cyclic scheduling experimental setup for the heat charging and discharging of the MgO composites, Bentonite as an additive improved the structural strength, and Zeolite 13X enhanced the reaction rate and led to faster reactions compared to only MgO as a TCM. With MgSO 4 as an additive, however, the TCM composite showed a high reactivity during the a few cycles, and then rapidly became inactive due to byproducts side reaction. The results indicated that Bentonite and Zeolite additives, in an MgO composite, as a TCM can improve the mechanical strength and chemical reaction, optimum ratio is necessary to compromise promoting the thermochemical reaction.

Keywords: thermal energy storage; thermochemical material; magnesium oxide; bentonite; zeolite 13X; composite materials (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/9/2366/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/9/2366/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:9:p:2366-:d:168481

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2366-:d:168481