EconPapers    
Economics at your fingertips  
 

Data-Driven Kernel Extreme Learning Machine Method for the Location and Capacity Planning of Distributed Generation

Jingjing Tu, Yonghai Xu and Zhongdong Yin
Additional contact information
Jingjing Tu: School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China
Yonghai Xu: School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China
Zhongdong Yin: School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China

Energies, 2018, vol. 12, issue 1, 1-21

Abstract: For the integration of distributed generations such as large-scale wind and photovoltaic power generation, the characteristics of the distribution network are fundamentally changed. The intermittence, variability, and uncertainty of wind and photovoltaic power generation make the adjustment of the network peak load and the smooth control of power become the key issues of the distribution network to accept various types of distributed power. This paper uses data-driven thinking to describe the uncertainty of scenery output, and introduces it into the power flow calculation of distribution network with multi-class DG, improving the processing ability of data, so as to better predict DG output. For the problem of network stability and operational control complexity caused by DG access, using KELM algorithm to simplify the complexity of the model and improve the speed and accuracy. By training and testing the KELM model, various DG configuration schemes that satisfy the minimum network loss and constraints are given, and the voltage stability evaluation index is introduced to evaluate the results. The general recommendation for DG configuration is obtained. That is, DG is more suitable for accessing the lower point of the network voltage or the end of the network. By configuring the appropriate capacity, it can reduce the network loss, improve the network voltage stability, and the quality of the power supply. Finally, the IEEE33&69-bus radial distribution system is used to simulate, and the results are compared with the existing particle swarm optimization (PSO), genetic algorithm (GA), and support vector machine (SVM). The feasibility and effectiveness of the proposed model and method are verified.

Keywords: distribution generation (DG); data-driven; kernel extreme learning machine algorithm (KELM); voltage stability evaluation index (IVSE); location; capacity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/1/109/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/1/109/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2018:i:1:p:109-:d:193943

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:109-:d:193943