EconPapers    
Economics at your fingertips  
 

Reliability Monitoring Based on Higher-Order Statistics: A Scalable Proposal for the Smart Grid

Olivia Florencias-Oliveros, Juan-José González- de-la-Rosa, Agustín Agüera-Pérez and José-Carlos Palomares-Salas
Additional contact information
Olivia Florencias-Oliveros: Research Group PAIDI-TIC-168, Computational Instrumentation and Industrial Electronics (ICEI), Area of Electronics, University of Cádiz, Higher Polytechnic School, Av. Ramón Puyol S/N, E-11202 Algeciras, Spain
Juan-José González- de-la-Rosa: Research Group PAIDI-TIC-168, Computational Instrumentation and Industrial Electronics (ICEI), Area of Electronics, University of Cádiz, Higher Polytechnic School, Av. Ramón Puyol S/N, E-11202 Algeciras, Spain
Agustín Agüera-Pérez: Research Group PAIDI-TIC-168, Computational Instrumentation and Industrial Electronics (ICEI), Area of Electronics, University of Cádiz, Higher Polytechnic School, Av. Ramón Puyol S/N, E-11202 Algeciras, Spain
José-Carlos Palomares-Salas: Research Group PAIDI-TIC-168, Computational Instrumentation and Industrial Electronics (ICEI), Area of Electronics, University of Cádiz, Higher Polytechnic School, Av. Ramón Puyol S/N, E-11202 Algeciras, Spain

Energies, 2018, vol. 12, issue 1, 1-14

Abstract: The increasing development of the smart grid demands reliable monitoring of the power quality at different levels, introducing more and more measurement points. In this framework, the advanced metering infrastructure must deal with this large amount of data, storage capabilities, improving visualization, and introducing customer-oriented interfaces. This work proposes a method that optimizes the smart grid data, monitoring the real voltage supplied based on higher order statistics. The method proposes monitoring the network from a scalable point of view and offers a two-fold perspective based on the duality utility-prosumer as a function of the measurement time. A global PQ index and 2D graphs are introduced in order to compress the time domain information and quantify the deviations of the waveform shape by means of three parameters. Time-scalability allows two extra features: long-term supply reliability and power quality in the short term. As a case study, the work illustrates a real-life monitoring in a building connection point, offering 2D diagrams, which show time and space compression capabilities, as well.

Keywords: signal waveform compression; higher-order statistics (HOS); power quality (PQ); computational solutions for advanced metering infrastructure (AMI); smart grid (SG) applications (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/1/55/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/1/55/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2018:i:1:p:55-:d:193091

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:55-:d:193091