EconPapers    
Economics at your fingertips  
 

Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends

Y.H. Teoh, K.H. Yu, H.G. How and H.-T. Nguyen
Additional contact information
Y.H. Teoh: School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
K.H. Yu: School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
H.G. How: Department of Engineering, School of Engineering, Computing and Built Environment, KDU Penang University College, 32, Jalan Anson, 10400 Georgetown, Penang, Malaysia
H.-T. Nguyen: Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City 700000, Vietnam

Energies, 2019, vol. 12, issue 10, 1-17

Abstract: In the present study, the effects of adding of bioethanol as a fuel additive to a coconut biodiesel-diesel fuel blend on engine performance, exhaust emissions, and combustion characteristics were studied in a medium-duty, high-pressure common-rail turbocharged four-cylinder diesel engine under different torque conditions. The test fuels used were fossil diesel fuels, B20 (20% biodiesel blend), B20E5 (20% biodiesel + 5% bioethanol blend), and B20E10 (20% biodiesel + 10% bioethanol blend). The experimental results demonstrated that there was an improvement in the brake specific energy consumption (BSEC) and brake thermal efficiency (BTE) of the blends at the expense of brake specific fuel consumption (BSFC) for each bioethanol blend. An increment in nitrogen oxide (NOx) across the entire load range, except at low load conditions, was found with a higher percentage of the bioethanol blend. Also, it was found that simultaneous smoke and carbon monoxide (CO) emission reduction from the baseline levels of petroleum diesel fuel is attainable by utilizing all types of fuel blends. In terms of combustion characteristics, the utilization of bioethanol blended fuels presented a rise in the peak in-cylinder pressure and peak heat release rate (HRR) at a low engine load, especially for the B20E10 blend. Furthermore, the B20E10 showed shorter combustion duration, which reduced by an average of 1.375 °CA compared to the corresponding baseline diesel. This study therefore showed that the B20E10 blend exhibited great improvements in the diesel engine, thus demonstrating that bioethanol is a feasible fuel additive for coconut biodiesel-diesel blends.

Keywords: Combustion; bioethanol; biodiesel; common-rail; emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/10/1954/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/10/1954/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:10:p:1954-:d:233204

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1954-:d:233204