EconPapers    
Economics at your fingertips  
 

A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition

Hyungyu Kim, Kwansu Kim and Insu Paek
Additional contact information
Hyungyu Kim: Department of Advanced Mechanical Engineering, Kangwon Nat’l University, Chuncheon-si 24341, Korea
Kwansu Kim: Department of Advanced Mechanical Engineering, Kangwon Nat’l University, Chuncheon-si 24341, Korea
Insu Paek: Division of Mechanical and Biomedical, Mechatronics and Materials Science and Engineering, Kangwon Nat’l University, Chuncheon-si 24341, Korea

Energies, 2019, vol. 12, issue 10, 1-19

Abstract: This study was conducted to analyze the impact of surrounding environmental changes on the feedback gain and performance of a closed-loop wind farm controller that reduces the error between total power output of wind farm and power command of transmission system operator. To analyze the impact of environment changes on wind farm controller feedback gain, the feedback gain was manually changed from 0 to 0.9 with a 0.1 interval. In this study, wind speed and wind direction changes were considered as environment changes; it was found by simulation code that the wind farm controller gain is in inverse proportion to wake recovery rate. In other words, the feedback gain should be higher if the distance between upstream and downstream wind turbine is not sufficient to wake recovery. Furthermore, the feedback gain should be lower when the upstream wind turbine generates a relatively weak wake by operating above the rated wind speed. The wind farm simulation was performed using reference 5 MW wind turbines from the National Renewable Energy Laboratory (NREL), which are numerically modeled for each element so that wind farm power output and tower load can be calculated according to the variation of the power command by using a modified wake model with improved accuracy. All the simulations performed in this study were carried out to review the power output accuracy of wind farms, but only if the transmission system operator’s power command was lower than the available power of wind farm. In this study, the gain of the wind farm controller was applied differently depending on the wind speed and direction to consider benefits in terms of power and tower load, especially if the wake effect of the upstream wind turbine was rapidly transferred to the downstream wind turbine. Ultimately, a simple, but more effective, power distribution method was proposed for distributing power commands to wind turbines that constitute wind farms and the study indicated the need for controller gain adjustment based on surrounding environmental changes.

Keywords: wind farm simulation; closed-loop wind farm control; wake; wind farm controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/10/2004/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/10/2004/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:10:p:2004-:d:234277

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2004-:d:234277