EconPapers    
Economics at your fingertips  
 

Quantitative Evaluation of the “Non-Enclosed” Microseismic Array: A Case Study in a Deeply Buried Twin-Tube Tunnel

Hang Zhang, Chunchi Ma and Tianbin Li
Additional contact information
Hang Zhang: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
Chunchi Ma: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
Tianbin Li: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

Energies, 2019, vol. 12, issue 10, 1-17

Abstract: The high-stress hazards of underground engineering have stimulated the exploration of microseismic monitoring and early warning methods. To achieve a good monitoring effect, the monitoring object is usually enclosed by a microseismic array (sensor array) (e.g., slope engineering, etc.). However, some characteristics of a buried tunnel, including “linear”, “deep-buried”, and “long”, make it difficult to deploy a reasonable microseismic array, which leads to the microseismic array being non-enclosed for the monitoring object. Application of the non-enclosed microseismic array yields decreases the accuracy of the source location. To solve the problem wisely, this paper deals with the feasibility of non-enclosed microseismic arrays (axial-extended, lateral-extended, and twin-tube arrays) by introducing a quantitative method. To this end, an optimized microseismic array with the best source location accuracy for a twin-tube expressway tunnel is proposed. The obtained results reveal that the non-enclosed microseismic arrays, which are unavoidable in expressway tunnel engineering, do not introduce errors but reduce the ability to resist them. Further, the twin-tube array achieves a better source location accuracy than the axial and lateral-extended arrays. In the application of the source location based on the particle swarm optimization (PSO) algorithm to the twin-tube array, microseismic events, which cluster in the rockburst section, are wholly gathered, and the maximum error is reduced by about 30–50 m, indicating its greater feasibility with respect to the single-tube array.

Keywords: microseismic monitoring; non-enclosed array; twin-tube tunnel; source location accuracy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/10/2006/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/10/2006/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:10:p:2006-:d:234312

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:2006-:d:234312